Nuclear mass systematics by complementing the Finite Range Droplet Model with neural networks

نویسندگان

  • S. Athanassopoulos
  • E. Mavrommatis
  • K. A. Gernoth
  • J. W. Clark
چکیده

A neural-network model is developed to reproduce the differences between experimental nuclear mass-excess values and the theoretical values given by the Finite Range Droplet Model. The results point to the existence of subtle regularities of nuclear structure not yet contained in the best microscopic/phenomenological models of atomic masses. Combining the FRDM and the neural-network model, we create a hybrid model with improved predictive performance on nuclear-mass systematics and related quantities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Application Of Correlation on Ann Estimated Mass

A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Nuclear mass systematics using neural networks

New global statistical models of nuclidic (atomic) masses based on multilayered feedforward networks are developed. One goal of such studies is to determine how well the existing data, and only the data, determines the mapping from the proton and neutron numbers to the mass of the nuclear ground state. Another is to provide reliable predictive models that can be used to forecast mass values awa...

متن کامل

Performance Evaluation of a Curved Type Vane Separator at Different Plate Spacings in the Range of 25 to 35mm Using Numerical Simulation

In this paper, the turbulent air droplet flow inside a single passage of a curved type vane separator has been studied numerically. The simulation is based on the Eulerian - Lagrangian method. For turbulent air flow calculations, a computer code was developed to solve the Reynolds Averaged Navier Stokes (RANS) equations together with the equations of Reynolds Stress Transport Model (RSTM) o...

متن کامل

Extracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy

Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005